
Team Outlaws
Software Testing Plan

Project Sponsor and Mentor:
Dr. Eck Doerry

Team Members:
Quinn Melssen

Liam Scholl
Max Mosier

Dakota Battle

March 27th, 2022

Version 1.0



2

Table of Contents

1 Introduction 3

2 Unit Testing 4
2.a. User Login 5
2.b. User Registration 6
2.c. Adding Data and Manipulating It 6
2.d. Student Features 6
2.e. Team Lead Features 7

3 Integration Testing 7

4 Usability Testing 10

5 Conclusion 13



3

1 Introduction
As Agile programming practices continue to take the tech industry by storm, the

importance of small teams in real world engineering workplaces is quickly increasing.
According to Goremotely.net, over 71% of tech companies either already use, or are in
the process of adopting agile methods, where small, flexible and cross-functional teams
play the central role. The prevalence of small team workgroups in the professional world
has made some wonder: why are more engineering classes in higher education not
team-based, to provide specific training in small team projects? A main reason for this is
the difficulty for faculty to manage and maintain the teams involved in such an
undertaking. TeamBandit seeks to be a web-application that serves as a comprehensive
technical solution to streamline the delivery of team-based project courses, nullifying
many of these complexities.

As a project on the scale of TeamBandit comes together, systems can quickly
become complex and convoluted, resulting in the need to perform rigorous testing. This
is especially true for user-facing applications that will be used by many people for many
different use cases. In order to ensure that the end-user will receive the best product
possible, with as few bugs as possible, unit and integration tests are key during the
development process.

With all of this in mind, Outlaws have devised a host of software tests focused
around the use of Selenium. Our testing plan focuses on exhaustively utilizing the
application from the user perspective as failures from the end-user point of view are the
most pressing. With a small team such as ours and a limited time scale, user testing
can be hard to conduct efficiently, thus the use of automation software such as
Selenium to expedite the testing process.

Our integration portion that takes a closer look at the interactions between our
various modules will be completed using the React Testing Library, a feature that comes
baked in with the create-react-app boilerplate that we used as the foundation of our
system. By utilizing something already existing in our software, we hope to lower overall
development time for our testing and get useful feedback as soon as possible.

Finally, we hope to do small-scale user testing to have real end-users get hands
on with our software. By this point in our testing process we hope to have caught and
fixed most of the bugs, however we as developers have an insight into the system and
its use that a new user may not. Thus, this portion of the testing hopes to find
convoluted use cases that someone may not be able to pick up on their own, and shed
light on how we can fix them.



4

Each of these testing plans will be laid out in more detail below.

2 Unit Testing

In order to make sure our TeamBandit application works as intended, Unit Testing
is a foundational step in testing and making sure the application works as intended. Unit
Testing is a type of software testing where individual ‘units’ or ‘components’ of a
software are tested. The purpose of testing each one individually is to validate that each
unit of the software code performs as expected. Unit Tests isolate a section of code and
verify its correctness. A unit may be a function, method, procedure, module or object.

Unit Testing is primarily done during the development stages as you are
supposed to test each unit after writing them. It’s important to not take a lax approach to
Unit Testing, as you will end up doing it anyways in Integration, System, and Usability
Testing. Unit Tests help to fix bugs early in the development cycle and save costs. It
helps the developers to understand the testing code base and enables them to make
changes quickly.

While we did not start actual Unit Testing until later on in the stages of
development. We have adapted a Unit Testing style as we implemented features of
TeamBandit. For example, when implementing our Login system for TeamBandit, we
tested to see what would happen when:

1. You try logging in with an existing user, which should log you in.
2. You try logging in with a user that doesn’t exist, which should not log you in.
3. You try logging in with blank credentials, which should not log you in.

While effective in determining if a unit's functionality properly exists, this system
could have been automated to save time and get better feedback on our units.

Now that we are focusing on Unit Testing, we want to keep the focus on testing
features that our users will directly be using. Our goal is to ensure that we cover as
many use cases scenarios as possible. With that in mind we wanted to find a tool set
that effectively mimicked users interacting with TeamBandit. In our research we came
across Selenium and PlayWright which both offered tools for writing tests to mimic user
interaction with TeamBandit. We ended up choosing to work with Selenium over
PlayWright as PlayWright is a new tool that is missing a lot of tools that its competitor
Selenium offers. Members of our group also had prior experience with Selenium,
reducing the overhead required to develop well rounded tests, an important factor when



5

considering our limited development window. Playwright also uses a headless browser
to perform tests which can be helpful in certain circumstances but robs developers of
the ability to watch potential errors play out in real time, a valuable tool in gathering
quick knowledge about an issue. Selenium allows us to write tests that closely mock
what users will be doing with our software, simulating mass user testing to ensure high
loads among other things do not cause issues with our software.

In order to properly test TeamBandit for proper use case outcomes, we identified
what units were most important in testing for our application. These units include:

● User Login
● User Registration
● Adding Data and Manipulating It
● Team Assignment
● Student Features
● Team Lead Features

These units cover a majority of what our users will actually be doing when they
interact with TeamBandit and we will now detail how we will test each unit individually.

2.a. User Login
This unit covers the act of a student, organizer, and mentor user logging into our
application. To properly test this unit, we came up with three main tests, these tests
include:

1. Logging in as an Existing User
This test is meant to verify that an existing user can sign into the application and
that it properly identifies what type of user is signing in, whether it be an
organizer, student or mentor.

2. Logging in with False Credentials
This test is meant to verify that someone who doesn't have an account with
TeamBandit cannot log in. There are two key features we wanted to check,
logging in as a user who does not yet exist and logging in with an invalid
password information.

2.b. User Registration
This unit covers the act of an organizer registering to utilize our application. To properly
test this unit, we came up with three main tests, these tests include:

1. Registering as a New User
For this test we simply wanted to create a new organizer user in order to test our
database’s capability to process larger amounts of data. This consisted of



6

creating dummy information and utilizing Selenium to create new users en
masse.

2. Registering As an Existing User
For this test we wanted to register with existing organizer information in order to
test potential conflicts and how our database schema handles them. To properly
test this we needed to pull a list of registered organizer information to use.

3. Registering with Invalid Information
For this test we wanted to input invalid information such as an invalid email
format to ensure users are always alerted as to why their account may not have
been created.

2.c. Adding Data and Manipulating It
This unit covers all of the data that the organizer can add/edit. There are a lot of data
entries including, courses, clients, projects, students, mentors, assignments, and
schedules. To properly test this unit, we came up with two main tests that we just
duplicated for all of these data points, these tests include:

1. Add Data Entry
This test is meant to verify that when proper fields are filled out, the
corresponding data entry will be filled out accordingly. This is to make sure that
when adding a new course, client, project, student, mentor, assignment, and
schedules the proper information is assigned to their respective data.

2. Edit Data Entry
Sometimes data can change or might not have been inputted correctly from the
start. This test is meant to verify that organizers can change the data fields and
that they will properly update and display the new data.

2.d. Student Features
Students have several features that allow them to perform their tasks throughout the
semester, many of which need to be tested to ensure that no one is unable to do them,
potentially damaging their grade.

1. Choosing Project Preferences
The project preferences module has gone through many iterations to reduce its
erratic nature but will still need to be tested to ensure that rapid and frequent
changes can be tolerated by the database. This will consist of a Selenium script
utilized across multiple user accounts, potentially simultaneously, to ensure that
our database can process all changes.

2. Submitting Assignments



7

Submitting assignments will need an automated test to ensure that revisions can
be submitted multiple times as students should be able to change their
submissions.

2.e. Team Lead Features
This unit encompasses all of the features available to the Team Lead. This is a student
role with more meta capabilities pertaining to the team, including changing logos,
names, and team website information. Some of the tests developed for this role include:

1. Altering Team Website Information
Throughout the semester, teams are expected to keep a meta information
website about their project updated with current data, resulting in many changes
to it over the course of the semester. A Selenium test will be written to simulate
this, rapidly updating documentation, descriptions, and other areas of the Team
Website and checking to see that these updates are reflected on the live version
in a timely manner.

2. Updating Team Meta Information
Team Leads will be expected to upload key information at the start of the
semester such as PDFs, Team Descriptions, and Team Roles. These will be
susceptible to change, thus requiring a Selenium test to make sure successive
changes to this information does not cause issues.

3. Organizer Changing Team Lead
Team Leads can and undoubtedly will change throughout the course, requiring a
new student to be assigned this role by the organizer. We will create Selenium
tests to simulate this, having an organizer account change the role to another
student and logging into said account to make sure the abilities of this role have
been transferred.

3 Integration Testing
This web application contains many different modules that cohesively interact

with each other to ensure that a dynamic and single page application is generated to the
user. In order to confirm that these modules are correctly interacting with each other,
their integration needs to be tested. Integration testing is a type of testing where
software modules are tested as a group. The overall purpose that this testing serves is
to inform the development team of any possible defects the system experiences during
the interaction of the modules. Before describing how this integration will be tested, the
modules will be briefly detailed below.



8

● User Authentication Module - Ensures that information is correctly stored and
pulled from the database.

● Clients Module - the course organizer can have an organized view of the project
clients and have the ability to add, edit, and delete any information for a particular
client.

● Email Hub Module - Pulling emails associated with capstone clients, storing them
into a database, pulling those messages from the database, and displaying them.

● Courses Module - Centralized location for all courses and their corresponding
course information.

● Teams/Projects Module - Ensure that a course organizer has the ability to create
projects within a course and assign users, such as students and mentors, to a
project.

It is just as important to understand how each of the above modules interact with
each other. Below is a diagram of the high level architecture of the web application.

Figure 3: Diagram showing the high level architecture of the web application

Before any testing implementations are detailed, this section will first detail JSON
Web Tokens, user identifiers, and the process the user must go through to have these
authentication items associated in their browser session. From there, page load
confirmation will be detailed.



9

First, the integration from User Authentication, or user sign-in/sign-up, to the
main TeamBandit page will need to be tested. It is worth noting that this initial module
interaction is the most important aspect of integration testing for this application as the
user will be associated with a JSON Web Token (JWT), which can be continuously
referenced in the web application’s internal API made with Express, the back end
framework for Node.js for testing and security purposes. Hence, there is no need for
any other outside testing library for any integration testing related to user access. For
example, when a user registers an account for TeamBandit, the data they input, such as
their name, email, and password is sent to the back end of the application and will need
to follow these steps:

1. An HTTP POST request is made to the API where the input data from the
user is deconstructed to test individual aspects of the data.

2. Check if the user is already registered in the database by inspecting all
emails already registered.

a. If the user is already registered, the user receives a simple
response from the back end that informs the user that they must
use a different email address.

b. Otherwise, the user’s information is stored in the database with
their hashed password.

3. At this point, the user is assigned a JWT that is associated with them for a
period of time to authenticate their access privileges.

The process of a user signing into the web application is largely similar to the
process explained above, but succeeds if a user’s information is already in the
database. Moments before the user is signed in, the JWT is stored in the browser’s
local storage, along with a user identifier that is associated with the JWT. The purpose
of the user identifier is to allow the web application to display the proper information to
the user with the proper credentials. An example of the steps that verify this process
are:

1. A course organizer selects a course on their courses page.
2. The course opens and displays the proper tabs of information in the

course. These include Projects, Schedule, Students, Mentors, and
Settings as an example.

3. The Settings tab will only appear for an organizer as the web application
can easily read that the user’s identifier is an organizer, and can verify that
the organizer is legitimate through their JWT.

The process above is the same for all aspects of the web application that require
the display, adding, editing, or deleting of sensitive information.



10

Now that the basic foundations of how a user is authenticated has been detailed,
an explanation of how to confirm that a new module has just been loaded to the page
will follow.

The front end framework, React, is a component based application library that
simply compiles and places all components into a single HTML file. Unlike the use of
JWTs for authentication, ensuring that a new module has loaded will require the use of
the React Testing Library. In order to correctly utilize this library to test page loading,
Document Object Model (DOM) elements of the final HTML file can be tested with this
library. Examples of DOM elements include div tags, body tags, as well as any other
HTML tags. In React, developers can essentially build their own tags made up of
simpler tags. These developer-built tags are the components. The components can
simply be tested with React Testing Library’s render function. With the render function, a
component can simply be passed in as an argument to ensure that all inner elements
are mounted, ensuring that the component is fully mounted.

Now that individual unit tests have been done, as well as the completion of larger
picture integration tests, usability testing will now be detailed to complete the software
testing process for TeamBandit.

4 Usability Testing
As it pertains to the usability of TeamBandit, the process for testing the

application’s usability is with respect to the end user’s experience in carrying out the
intended workflow. The objective of testing the usability of the system is to examine,
measure, and (re)assess the quality of the user interface given the technical capabilities
and general patience of the target end user(s). This stage of testing is designed to
provide a clear understanding of which elements (or lack thereof) serve to positively
impact the application’s ease of use and/or inhibit the experience of deliberate
interactions.

The objectives of conducting usability testing are to acquire a relevant set of data
samples to be used:

● as a practical baseline in reforming select areas of the user interface.
● to draw conclusions about the system’s understandability.
● to examine deficiencies in the design’s addressing of the intended audience.

This manner of testing is conducted by first assembling a sample group of real
people who fit one or more elements of the criteria initially set to define the consumer
base the product was built for. The individuals included in the sample will then be



11

provided the current viable product with no instructions beyond what would be available
within the finished application itself. They will then attempt to use the product for a
practical workflow, discovering and inferring how each major component of the system
works. This process is typically done under direct observation or without direct
observation but followed by a survey or collection of input from the individual.

The development of the above procedure’s specific adaptation for the purposes
of TeamBandit was considered with emphasis on two primary characteristics:

● background of end users.
● assumptions/expectations of end users based on standards set by similar

products. This may encompass:
○ Interaction time
○ Familiar/relatable interface design
○ Quantity of physical actions necessary to conduct an action (click, type,

etc.)

The procedure to identify and enlist the participation of users for the testing
process needed to primarily consider the criterion of the background of end users.
Doing so permitted us to define practical spectrums for both the anticipated extent of
technical capability and the level of knowledge pertaining to the workflow of managing
team-based courses. These spectrums serve as the reasonable stipulations for
selection of test users to adequately represent course organizers; however there is an
additional end user which interacts with the system for alternative purposes that must
be taken into consideration: students.

Although the structure of the user interface is essentially uniform between the
system’s organizer and student views, there are variations in application use cases and
available modes of user interaction. The lack of change in the physical arrangement of
the user interface negates the need to distinguish assumptions/expectations
measurements between the two end users. For this reason, this area of criteria can be
analyzed independently as an overall system evaluation. Therefore, only the
background of these two end user groups must be considered separately.

The typical background of the organizer user group is expected to be an
instructor, likely but not necessarily instructing in a technical field. This instructor must
be the organizer of a course who is responsible for arranging assignments, project and
team selections, and communications with internal and external parties; because the
instructor will certainly be the course organizer, we can safely generalize that the
instructor is capable of broadly defining a course plan- TeamBandit is the tool to put
such a plan into action. A team-based course plan inherently includes a definition of the



12

project genre (e.g. software engineering), a tentative schedule pace, and
communication with affiliated parties. Certainty that this organizer end user will be
capable of this supports the assumption that their background will include familiarity with
the fundamental components present in TeamBandit such as the communication portal,
schedule and deliverables, and project assignment. As a result we need not consider
the end user’s background in fundamental concepts of course organization but instead
only their background’s impact on simplicity of use. We will proceed to testing with the
most recent version of TeamBandit which consists of what we believe to be a
self-explanatory user interface appropriate for even users lacking technical expertise.

Student users’ background is expected to be lacking in course organization
concepts but equally as capable of operating the interface due to the current simplicity
as stated above. However, we determined that lack of student experience with the core
concepts of course organization are supplemented by the fact that their instructor is
guiding the course, and hence can make any clarifications to uncertainty of the user
interface just as an instructor would introduce a student to any other web application
used for academic purposes.

To assemble appropriate sample end users to represent course organizers, and
to account for the variability spanning the spectrum of these users, we intend to enlist
the help of two college/university faculty members with experience organizing
team-based courses or projects as well as instructors who have no prior experience
overseeing a team-based course but do have experience planning typical classes. This
will provide a more precise analysis into potential differences in usability relative to prior
experience.

In the case of student sample users, we will select individuals who have used
online academic applications before as well as individuals who have not. This is to
reflect the experience of both end users who have familiarity working with online
academic applications and new or first time users of this type of application. We can
then determine if TeamBandit’s usability is well-enough suited for users of any
experience level.

The usability regime will be conducted in the manner described below, in order
as written. The entire process will be observed by a designated team member:

1) Sample end user will be asked to verbally express each step of their thought
process, or “think aloud”. This user will be asked for honest feedback and
informed that both positive and negative feedback is welcomed and beneficial to
the refinement of the final product.



13

2) Sample end user will be given access to TeamBandit and provided with a use
case scenario.

3) Sample user will be asked to carry out this use case, having never used the
application before.

4) The observer will take note of everything that is said and/or critiqued by the
sample end user.

5) Following the end of the use case scenario, the sample end user will be asked if
there was anything they found particularly confusing or they feel could be made
more clear about the user interface.

This will be repeated with each end user and adjusted according to their end user role.
For example, a student end user will be given a use case to be carried out in the
“student-side” of TeamBandit. The resulting data will be analyzed by the entirety of the
development team to examine any areas of the application that repeatedly confuse
different users, with the goal of identifying any trends that suggest something may need
to be refined. Then, any unique issues or encounters will be examined to check for
possible areas of refinement that had not initially been considered.

For additional insight, we will also seek out a review of the application by two
expert software/web developers. These reviews will be used to supplement the actual
sample user testing and serve as reassurance if the team has any uncertainty
pertaining to a particular concern.

5 Conclusion
Software testing is a necessity in projects on the scale of TeamBandit, especially on a

time scale such as ours where bug fixing or UX may take a back seat during development. This
is all the more true for user facing applications, where hundreds or even thousands of users
may be putting the software to the test.

Our testing plan seeks to cover all bases, from fixing large bugs to righting difficult
use-cases for new users. With our limited development time we have sought to utilize popular
testing modules to perform our examination into potential failings of our application. Selenium,
our main tool, will act as a form of high efficiency user testing, looking to find vulnerabilities by
quickly performing front-end tests using randomized data. Our integration testing seeks to use
create-react-app’s boilerplate testing library in order to test how the different modules of the
application will work together under high stress, and our user testing seeks to not only uncover
any remaining bugs but alert us to any convoluted or difficult parts of the application that we as
developers may have overlooked. By utilizing these three different test types we hope to have a
cohesive testing plan in place.

With this plan we aim to target any of these bugs and inefficiencies over the course of
the next month as our software development time comes to a close and by doing so deliver a
bug free and easy to use experience to our client, Dr. Doerry.


